The Data Science Lab
since 2005
  • Home
  • Research
      • Research grants
      • Research interests
      • Research leadership
      • Student theses
      • Humanoid Ameca
      • AI Server
        • GPU
        • Request
        • Allocation
  • Consultancy
      • Consulting projects
      • Cooperate training
      • Enterprise innovation
      • Impact cases
      • Our clients
      • Partnership
  • People
      • Awards and honors
      • Staff
      • Team members
  • Activities
      • Events and services
      • Talks
      • Tutorials
      • Workshops
  • Publications
  • Communities
      • ACM ANZKDD Chapter
      • Big data summit
      • Data Analytics book series
      • DSAA conferences
      • IEEE TF-DSAA
      • IEEE TF-BESC
      • JDSA Springer
      • DataSciences.Info
      • MQ's DSAI
  • Resources
      • Actionable knowledge discovery
      • Agent mining
      • AI: Artificial-intelligence
      • AI4Tech: AI enabling technologies
      • AI4Finance: AI for FinTech
      • AI robots & humanoid AI
      • Algorithmic trading
      • Banking analytics
      • Behavior analytics, computing, informatics
      • Coupling and interaction learning
      • COVID-19 global research and modeling
      • Data science knowledge map
      • Data science dictionary
      • Data science terms
      • Data science tools
      • Data science thinking
      • Domain driven data mining
      • Educational data mining
      • Large-scale statistical learning
      • Metasynthetic engineering
      • Market surveillance
      • Negative Sequence Analysis
      • Non-IID Learning
      • Pattern relation analysis
      • Recommender systems
      • Smart beach analytics
      • Social security analytics
      • Tax analytics
  • About us
JDSA: Trans-AI/DS, AI for disaster resilience

Trans-AI/DS: transformative, transdisciplinary and translational artificial intelligence and data science
Longbing Cao. Int. J. Data Sci. Anal., 15(2): 119-132, 2023.
Access the paper at the Int. J. Data Sci. Anal..

After the many ups and downs over the past 70 years of AI and 50 years of data science (DS), AI/DS have migrated into their new age. This new-generation AI/DS build on the consilience and universology of science, technology and engineering. In particular, it synergizes AI and data science, inspiring Trans-AI/DS (i.e., Trans-AI, Trans-DS and their hybridization) thinking, vision, paradigms, approaches and practices. Trans-AI/DS feature their transformative (or transformational), transdisciplinary, and translational AI/DS in terms of thinking, paradigms, methodologies, technologies, engineering, and practices. Here, we discuss these important paradigm shifts and directions. Trans-AI/DS encourage big and outside-the-box thinking beyond the classic AI, data-driven, model-based, statistical, shallow and deep learning hypotheses, methodologies and developments. They pursue foundational and original AI/DS thinking, theories and practices from the essence of intelligences and complexities inherent in humans, nature, society, and their creations.

AI and data science for smart emergency, crisis and disaster resilience
Int. J. Data Sci. Anal., 15(3): 231–246, 2023.
Access the paper at the Int. J. Data Sci. Anal. website.

The uncertain world has seen increasing emergencies, crises and disasters (ECDs), such as the COVID-19 pandemic, hurricane Ian, global financial inflation and recession, misinformation disaster, and cyberattacks. AI for smart disaster resilience (AISDR) transforms classic reactive and scripted disaster management to digital proactive and intelligent resilience across ECD ecosystems. A systematic overview of diverse ECDs, classic ECD management, ECD data complexities, and an AISDR research landscape are presented in this article. Translational disaster AI is essential to enable smart disaster resilience.

About us
School of Computing, Faculty of Science and Engineering, Macquarie University, Australia
Level 3, 4 Research Park Drive, Macquarie University, NSW 2109, Australia
Tel: +61-2-9850 9583
Staff: firstname.surname(a)mq.edu.au
Students: firstname.surname(a)student.mq.edu.au
Contacts@datasciences.org