The Data Science Lab
since 2005
  • Home
  • Research
      • Research grants
      • Research interests
      • Research leadership
      • Student theses
      • Humanoid Ameca
      • AI Server
        • GPU
        • Request
        • Allocation
  • Consultancy
      • Consulting projects
      • Cooperate training
      • Enterprise innovation
      • Impact cases
      • Our clients
      • Partnership
  • People
      • Awards and honors
      • Staff
      • Team members
  • Activities
      • Events and services
      • Talks
      • Tutorials
      • Workshops
  • Publications
  • Communities
      • ACM ANZKDD Chapter
      • Big data summit
      • Data Analytics book series
      • DSAA conferences
      • IEEE TF-DSAA
      • IEEE TF-BESC
      • JDSA Springer
      • DataSciences.Info
      • MQ's DSAI
  • Resources
      • Actionable knowledge discovery
      • Agent mining
      • AI: Artificial-intelligence
      • AI4Tech: AI enabling technologies
      • AI4Finance: AI for FinTech
      • AI robots & humanoid AI
      • Algorithmic trading
      • Banking analytics
      • Behavior analytics, computing, informatics
      • Coupling and interaction learning
      • COVID-19 global research and modeling
      • Data science knowledge map
      • Data science dictionary
      • Data science terms
      • Data science tools
      • Data science thinking
      • Domain driven data mining
      • Educational data mining
      • Large-scale statistical learning
      • Metasynthetic engineering
      • Market surveillance
      • Negative Sequence Analysis
      • Non-IID Learning
      • Pattern relation analysis
      • Recommender systems
      • Smart beach analytics
      • Social security analytics
      • Tax analytics
  • About us
Tutorials

 

  • Zhilin Zhao and Longbing Cao. Deep Non-IID Learning, IJCAI 2023
  • Guansong Pang, Longbing Cao and Charu Aggarwal. Deep Learning for Anomaly Detection: Challenges, Methods, and Opportunities, WSDM2021
  • Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Michael Sheng and Mehmet Orgun. Towards Ubiquitous Recommender Systems: Data, Approaches, and Applications, AAAI2021
  • Trong Dinh Thac Do, Longbing Cao and Jinjin Guo. Statistical Machine Learning: Big, Multi-source and Sparse Data with Complex Relations and Dynamics, AAAI2020
  • Longbing Cao and Can Wang. Behavior Informatics: Methods and Applications at AAMAS2020
  • Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet A. Orgun. Next-Generation Recommender Systems and Their Advanced Applications at IJCAI-PRICAI2020
  • Longbing Cao, Trong Dinh Thac Do and Chengzhang Zhu. Non-IID Learning of Complex Data and Behaviors at IJCAI2019, with Tutorial Slides
  • Liang Hu, Shoujin Wang, Longbing Cao and Songlei Jian. Coupling Everything: A Universal Guideline for Building State-of-The-Art Recommender Systems at IJCAI2019, with Tutorial Slides
  • Trong Dinh Thac Do and Longbing Cao. Statistical Machine Learning of Large, Sparse and Multi-source Data at PAKDD’2019, download the (Tutorial Slides)
  • Longbing Cao. Behavior analytics: methods and applications, at AAAI’2019 tutorial, download the (Tutorial Slides)
  • Longbing Cao, Philip Yu, Guansong Pang. Behavior analytics: methods and applications, KDD2018 tutorial, download the (Tutorial Slides)
  • Liang Hu, Longbing Cao, Songlei Jian. Non-IID Recommender Systems in Practice with Modern AI Techniques, PAKDD2018 Tutorial Melbourne, Australia, download the (Tutorial Slides).
  • Liang Hu, Longbing Cao, Jian Cao, Songlei Jian. When Advanced Machine Learning Meets Intelligent Recommender Systems, AAAI2018 Tutorial , here is the tutorial introduction, download the (Tutorial Slides).
  • Longbing Cao, Philip Yu, Guansong Pang and Chengzhang Zhu. Non-IID Learning, KDD2017, Halifax, Canada. (Tutorial Slides; and Youtube video part 1 and Youtube video part 2)
  • Longbing Cao, Behavior Computing: Deep Behavior Analytics and Active Behavior Management, PAKDD2015, Ho Chi Mingh City, Viet Nam. (Tutorial Slides)
  • Longbing Cao, Learning Non-IID Big Data, CIKM2014 Tutorial, CIKM2014, Shanghai. (Tutorial Slides)
  • Longbing Cao, Philip S Yu, Can Wang  Behavior Informatics: Modeling, Analysis and Mining of Complex Behaviors, 4 Aug 2013, IJCAI 2013, Beijing, China. (Tutorial Slides)
  • Longbing Cao, Philip S Yu, Can Wang  Behavior Computing: Complex Behavior Modeling, Analysis and Mining, WI-IAT 2012, 4 Dec 2012, Macau, China.
  • Longbing Cao  Domain-Driven Data Mining: Empowering Actionable Knowledge Delivery, PAKDD2009
  • Longbing Cao, Chengqi Zhang  Agent & Data Mining: the Synergy to Empower Intelligent Information Processing and Systems   The Pacific Rim International Conference on Artificial Intelligence (PRICAI-08)
  • Longbing Cao  Agents & Data Mining Interaction.  IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent Agent Technology 2007 (WI-IAT2007)
  • Longbing Cao  Behavior Modeling, Analysis and Mining.  DSKDBI2010
  • Longbing Cao (Coordinator)  Domain-Driven Data Mining: Empowering Actionable Knowledge Delivery.  DSKDBI2009
About us
School of Computing, Faculty of Science and Engineering, Macquarie University, Australia
Level 3, 4 Research Park Drive, Macquarie University, NSW 2109, Australia
Tel: +61-2-9850 9583
Staff: firstname.surname(a)mq.edu.au
Students: firstname.surname(a)student.mq.edu.au
Contacts@datasciences.org